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Abstract

Three types of loads are typical in vibration fatigue: random, harmonic and

impact. In an application, any combination of these loads is possible. In vi-

bration fatigue the random loads can be investigated by using the frequency-

response function of the structure. While the theoretical relationship between

the frequency-response function and the impact-response function is clear (they

form the Fourier pair), the time/frequency relationship of vibration-fatigue dam-

age has not yet been investigated in detail. The focus of this research is a

theoretical study of the time- and frequency-domain damage of a single-degree-

of-freedom dynamic system under well-separated half-sine impulse excitation.

The introduced theoretical relationship between the time- and frequency-domain

(Narrow-band and Tovo-Benasciutti method) damage showed that the signifi-

cantly different results are related to the underlying dynamic properties (e.g.,

natural frequency and damping) of a flexible system. Based on the introduced

relationship, the frequency-domain damage estimation is corrected for a reliable

damage estimation. In addition, an experimental test case is presented. The

introduced theoretical relationship opens up new possibilities to investigate the

impact excitation in the frequency domain and provides the necessary theoret-
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ical background for applications when the impacts are not well separated and

start to overlap, resulting in the broadband excitation observed in clearance

contacts.

Keywords: vibration fatigue, random loads, spectral methods, fatigue life,

stationary and non-stationary loading, non-Gaussian loading

1. Introduction

Flexible structures subject to vibrations experience material fatigue, often

referred to as vibration fatigue. In most cases the excitation vibrations are

of a random nature, harmonic or impulse. Harmonic and impulse loads are

deterministic and can be described analytically for linear systems in the time5

and frequency domains. Random loads are stochastic, and a frequency-domain

analysis is possible using the assumptions of linearity, stationarity and Gaus-

sianity [1]. In an application, the structures are exposed to a combination of

harmonic, random and impulse loads [2, 3]. While a combination of harmonic

and random loads can be studied in the frequency domain [4, 5, 6, 7], the rela-10

tionship of an impulse excitation in the time and frequency domains is not well

researched. These impulse loads can originate in increased clearances in con-

tacts due to wear, unforeseen use of the component, various loading conditions,

etc. The presence of these impulses can significantly influence the frequency

domain fatigue life predictions [8], even when dealing with loads well within the15

linear region. In the design phase of a component, the requirements for load

optimised structures and reduction of mass can significantly influence the struc-

tural dynamics of the component and subsequently their fatigue life. Therefore

an accurate fatigue life assessment is crucial for definitive conclusions in the

development of the structure.20

Fatigue life is typically estimated using counting methods in the time domain

(e.g., rainflow counting method [9]), or in the frequency domain (e.g., Narrow

band[10], Dirlik [11] or Tovo-Benasciutti method [12]). The impulse response

of a linear single-degree-of-freedom system is deterministic and a time-domain
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analysis would be preferable. However, when the impulses are randomly spaced,25

when the time histories are long, or where the impulse loads are combined

with other load types, a frequency-domain analysis of the damage is prefered.

Frequency-domain methods mostly rely on the assumption of a Gaussian sta-

tionary signal [1, 8, 13]. The presence of impulse signals renders the excitation

signal non-stationary and non-Gaussian, and thus calls for further research of30

counting methods in the frequency domain.

Recently, a great deal of effort was made to develop the frequency-counting

methods for the analysis of vibrationaly excited structures with non-Gaussian

and non-stationary excitation signals [14, 15]. Benasciutti and Tovo [12] re-

searched the non-stationary switching random loads.35

Ciantetti et al. [16] researched the damage rate from non-Gaussian signals

using a correction factor. Wolfsteiner [17, 18, 19] showed that a long signal can

be decomposed into Gaussian portions and analyzed with existing frequency-

domain methods. Similarly, an empirical decomposition model was derived by

Niu et al. in [20]. Rizzi et al. [21] showed that when dealing with non-Gaussian40

excitation signals, where the rate of impulses is much greater than the time

of the system’s impulse response, the response of a linear system is Gaussian

and frequency-domain counting methods can be applied. The lumping-block

equivalence method, where the non-stationary loads are divided into stationary

sections, was studied in [22].45

Palmieri et al. [8] experimentally and theoretically researched the impor-

tance of non-gaussianity and non-stationarity in vibrational fatigue and found

that the latter is significantly more important. Capponi et al. [23] introduced

an index of non-stationarity that quantifies the deviation from the Gaussian

stationary signals.50

The main goal of this study is to analyze the use of standard vibration-

fatigue methods [11, 24] when dealing with high-cycle impulse excitation on a

single-degree-of-freedom structure. The system response is analyzed numerically

and the influence of the damping ratio and the natural frequency on the error

of the frequency-counting method in relation to the rainflow-counting method55
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is studied. An experimental setup is used to confirm the introduced theoretical

relationships.

This manuscript is organized as follows. Section 2 presents the theoretical

background. In Section 3 the impulse excitation is theoretically investigated

using the time domain (rainflow-counting method) and the frequency domain60

(narrow-band [10] and Tovo-Bennasciutti [12] method). The comparison is pre-

pared for a singe-degree-of-freedom (SDOF) system, which in structural dy-

namics theory is relatively easily expanded to the arbitrary multiple-degree-

of-freedom (MDOF) case. The effect of damping and natural frequency on

the error of the frequency method is analyzed, and the ratio between time-65

and frequency-domain methods is derived. In Section 4 an experimental setup

is presented that confirms the introduced theoretical time/frequency relations.

Section 5 draws the conclusions.

2. Theoretical background

2.1. Structural dynamics and impulse response70

The fundamentals of structural dynamics are explained in more detail in

Appendix A.

When a single degree of freedom (SDOF) system [25] is excited with an ideal

unit impulse, this is defined with the Dirac delta function:

δ(t) =

∞, t = 0

0, t 6= 0,

(1)

the systems responds with the impulse response function g(t) [26, 25]:

g(t) =
e−δω0t sin

(√
1− δ2ω0t

)
√

1− δ2ω0

. (2)

When the damping coefficient is small (δ << 1,
√

1− δ2 ≈ 1) then Eq. (2)

simplifies to:

g(t) =
e−δω0t sin (ω0t)

ω0
. (3)
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In order to obtain the response for a general force excitation f(t), the convo-

lution integral of the impulse f(t) and the impulse-response function g(t) are

required [27].

x(t) = f(t) ∗ g(t) =

∫ t

−∞
f(τ) g(t− τ)dτ , (4)

where t is the time variable and x(t) is the time response of the SDOF system.

To obtain the response of the structure in the frequency domain, the Eq. (4)

must be transformed into the frequency domain. The Fourier transformation of

the convolution integral in the time domain is the multiplication of the Fourier

transforms of the two time-domain signals f and g [28]:

X(ω) = F {f(t) ∗ g(t)} = F (ω)G(ω) . (5)

where the Fourier transform is:

X(ω) = F {x(t)} =

∫ ∞
−∞

x(t) e2πiωtdt . (6)

2.2. The time-domain approach to a fatigue-life estimation

Here, the basics (used later in this paper) of the time-domain approach to

the fatigue-life estimation are presented (for details see, e.g., [29]).

The rainflow algorithm [9] transforms the stress time history into a series of

stress reversals. After the stress time history is determined, the Miners rule of

damage accumulation is applied and the damage is calculated as:

DRF =

M∑
i=1

ni
Ni
, (7)

where M is the number of ranges in the stress-reversal series that are identified

by the rainflow algorithm and ni is the number of stress reversals at each indi-

vidual stress level. Together with the fatigue parameters, which determine the

expected number of cycles Ni at a stress level, Eq. (7) leads to the accumulated

damage in the structure. The number of expected cycles Ni that a structure

survives at the stress level σi is theoretically described with the Wöhler curve

[30]:

σ = C Nk, (8)
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where k and C are the material’s fatigue parameters. One has to be aware that75

this simple S-N relationship does not account for the material endurance limit

and can only be used when dealing with high cycle fatigue [31].

2.3. The frequency-domain approach to a fatigue-life estimation

The basis of frequency-counting methods is the stress power spectrum den-

sity Sxx(ω), which is defined using Eq. (5):

Sxx(ω) = X∗(ω)X(ω) , (9)

where the X(ω) is the complex amplitude spectrum and X∗(ω) its conjugate.

There are several approaches to the time-to-failure estimations in the frequency80

domain [4, 32]. This research will be limited to the narrow-band method [10] and

the Tovo-Bennasciutti method [24]. For other methods and their comparison

see Mršnik et al. [4].

2.3.1. The narrow-band method

The narrow-band process is one where the spectral components of the exci-

tation forces are expected to fall within a narrow frequency band, typically a

width of 1/3 of an octave band or less [33]. When a process can be assumed to be

in a narrow band, every peak coincides with a cycle. Therefore, the cycle’s am-

plitudes are Rayleigh distributed. The narrow-band method for fatigue-damage

estimation was presented by Miles [10]. For stress amplitudes the definition of

the fatigue damage is [4]:

DNB = ν0C
−1
(√

2m0

)k
Γ

(
1 +

k

2

)
, (10)

where Γ(z) is the Euler Gamma function:

Γ(z) =

∫ ∞
0

tz−1e−tdt , (11)

ν0 is the expected positive zero-crossing intensity,

ν0 =

√
m2

m0
, (12)
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C and k are the material’s fatigue parameters, m0 and m2 are the 0-th and 2-nd

spectral moment respectively and αi is determined as:

αi =
mi√
m0m2i

. (13)

The spectral moment mi is defined as:

mi =

∫ ∞
0

ωiGxx(ω)dω . (14)

where Gxx(ω) is the one-sided power spectral density (2Sxx for ω > 0 and 0 for85

ω < 0) [4].

2.3.2. Tovo-Bennasciutti method

The Tovo-Bennasciutti method has proven to be the most generally appli-

cable frequency-domain method [4]. The impulse response of a SDOF structure

can be regarded as a narrow-band process. However here, the Tovo-Bennasciutti

method is being refered to as a more general frequency-domain method. For im-

pulses that are superimposed on a broad-band random process, such a method

would be required. With the Tovo-Bennasciutti method [12, 24] the fatigue-life

can be calculated as a linear combination of the upper and lower fatigue-damage

intensity limits, with the expression:

DTB =
(
b+ (1− b)αk−12

)
α2D

NB , (15)

where b is:

b = min

[
1,
α1 − α2

1− α1

]
, (16)

where αi is defined with Eq. (13).

2.4. Vibration fatigue

Vibration fatigue relates the structural dynamics and the frequency-domain90

approach to a fatigue-life estimation.

The decoupled modal superposition approach (A.2) provides the relationship

between the excitation F and the response X:

X = H(ω) F, (17)
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where H(ω) is the receptance matrix [25]. The jk-th element (where j is the

response and k is the excitation index) of the receptance matrix is:

Hjk(ω) =

N∑
r=1

ΦjrΦkr
ω2
r − ω2 + iηrωr

, (18)

where ωr is the r-th natural frequency, ηr is the modal damping for the r-th

natural frequency and Φjr is the jr-th element of the mass-normalized modal

matrix Φ [25]. However, for the fatigue-life estimation the stress-response tensor

is required. The transfer-function matrices Has present the relationship between

the kinematic random excitation PSD SX(ω) and the stress responses for the

purpose of the fatigue analysis:

SS(ω) = H∗as(ω) Has(ω) SX(ω). (19)

SS(ω) =


Sxx,xx(ω) . . . Sxx,yz(ω)

. . .
. . . . . .

Syz,xx(ω) . . . Syz,yz(ω)

 . (20)

The stress tensor SS(ω) has 6 independent components. A common method is to

determine an equivalent uniaxial stress state [34]. Other methods are described

in [35]. The equivalent stress is determined by:

Seq(ω) = a SS(ω) aT , (21)

where a is a vector of coefficients for the used multi-axial criterion. For more

details about the equivalent stress criteria see Nies lony and Macha [35] or Mršnik

et al. [34].

Multi-axial loads are not researched here, so the equivalent stress criterion is not

required. This manuscript focuses on SDOF systems, as the SDOF solution can

be used on more complex systems via decoupled modal coordinates, Eq.(A.3).

The stress response (22) can be obtained by multiplying the kinematic response

by a scalar coefficient kσ. kσ can be determined experimentally.

σ(t) = kσx(t) (22)
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3. Half-sine impulse excitation fatigue

In accelerated vibration testing many forms of impulses are used [36], e.g.,

half-sine, rectangular, triangular, trapezoidal, haversine and sawtooth impulse

[37]. Here, the frequently used half-sine form will be researched in detail; it is

defined as:

fs/2(t) = A (θ(t)− θ (t− τ)) sin(ω0t) , (23)

where τ is the duration of the half-sine impulse, A is the amplitude of the im-

pulse, and θ(t) is the Heaviside step function. The normalized half-sine impulse

is presented in Fig. 1.95
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Figure 1: Normalized half-sine impulse.

If the duration of the impulse is too long the natural response at ω0 might

not be excited [28]. For this reason the half-sine impulse is related to the natural

frequency ω0 of the excited SDOF structure:

ω0 =
π

a τ
, (24)

where a > 1 is a constant. In this research a = 2 will be used.

3.1. SDOF response in the time domain

In order to be able to compare the frequency domain to the time-domain

approach, a counting method must be applied in the time and frequency do-

mains. In the time domain, the rainflow algorithm has to be applied to the100
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stress response (4). As the stress σ(t) is related to the kinematic response x(t)

using a linear scaling coefficient kσ (22), here the kinematic response x(t) will

be researched, instead of the stress response (4).

Due to the deterministic nature of the SDOF response to a half-sine impulse,

the stress reversals can be obtained analytically. A cycle χ is the stress range105

between the two extremes of the SDOF system’s response.

In order to determine the stress peaks the convolution integral

x(t) = fs/2(t) ∗ g(t) (25)

must be solved. However, as the response has the same rate of decline and

frequency as the impulse response function g(t), the latter can be used to identify

the stress peaks, neglecting the transient phenomenon that does not generate a

fatigue cycle for small damping ratios (δ << 1), Fig. 2. For this the impulse-110

response function must be scaled to the amplitude of the impulse response,

determined by the convolution integral Eq. (4).

The extremes of the load (see Fig. 2), assuming a small damping ratio

(δ << 1), are:

pn = Ac g

(
(2n− 1)T0

4

)
n = 1, 2, 3, . . . (26)

where T0 = 2π/ω0 and Ac is the amplitude of the response.

Time  [s]
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-Ac

N
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Normalised response x(t)

Impulse transfer function g(t)

Peaks (pn )

Figure 2: Comparison of the normalized stress response x(t) and the impulse transfer function

g(t) with the corresponding peaks pn.

10



The amplitude of the response Ac can be obtained by solving the convolu-

tion integral 25 and determining its maximum by finding the zero of its first

derivative:
dx(t)

dt
= 0 (27)

The significant extreme occurs at:

t0 =

cos−1

 (a2+1)δ+e
πδ
a ((a2+1)δ cos(πa )−(a2−1) sin(πa ))√

(a2−1)2
(
e
2πδ
a +2e

πδ
a cos(πa )+1

)


ω0
, (28)

and has the value:

Ac =
1

(a2 − 1)
2
ω2
0

[
aAeδ(−t0)ω0

(
e
πδ
a

(
2δ cos

(π
a
− t0ω0

)
−

(
a2 − 1

)
sin
(π
a
− t0ω0

))
+
(
a2 − 1

)
sin(t0ω0) + 2δ cos(t0ω0)

)]
(29)

Now that the amplitude of the response is known, the stress reversals must be

determined in order to determine the fatigue damage of the impulse response115

with the rainflow algorithm.

The stress reversal χn is the amplitude between the two extremes of the

stress response:

χn = (−1)n+1pn+1 + (−1)npn, n = 1, 2, 3, ... (30)

Using Eq. (26) the stress reversals are:

χn = Ac(−1)ne−2πδn
(

e
1
2πδ(2n−1) + e

1
2πδ(2n+1)

)
cos(πn), (31)

Taking into account that n is an integer, Eq. 31 can be further simplified to:

χn = 2Ac cosh

(
πδ

2

)
eπδ(−n) n = 1, 2, 3, . . . (32)

The first stress cycle χ0 is between 0 and the maximum amplitude of the stress

response:

χ0 = Ac
e−

1
2 (πδ)

2
(33)
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Using Eq. (33) and (32) in the Palmgren-Miners rule of damage accumulation,

Eq. (7), the damage of one impulse response is:

DR =
( χ0

2C

)k
+

∞∑
n=1

( χn
2C

)k
, (34)

where k and C are the material’s fatigue properties.

The Cauchys criterion for convergence [38] states that for each ε > 0 a pair

k > n exists for which:∣∣∣∣∣∣
r∑

j=n+1

χn

∣∣∣∣∣∣ = |χn+1 + χn+2 + · · ·+ χr| < ε. (35)

Since the stress cycles of a damped SDOF structure limit towards 0 lim
n→∞

χn = 0,

the Cauchys criterion is satisfied and the sum in Eq.(34) is final:

∞∑
n=1

( χn
2C

)k
=

∞∑
n=1

(
(−1)n+1pn+1 + (−1)npn

2C

)k
=

(
Ace

− 1
2
(3πδ) cosh(πδ/2)(eπδ+1)

Cω0

)k
1− (e−πδ)k

(36)

Inserting Eq.(26) and Eq.(30) into Eq.(34) yields the time-domain approach

damage:

DR =

(
Ace

− 1
2 (πδ)

Cω0

)k
+

(
Ace

− 1
2
(3πδ) cosh(πδ/2)(eπδ+1)

Cω0

)k
1− (e−πδ)k

(37)

In lightly damped structures δ << 1, the cosh(πδ/2) ≈ 1, and Eq.(37) simplifies

to:

DR =

(
Ace

− 1
2 (πδ)

Cω0

)k
+

(
Ace

− 1
2
(3πδ)(eπδ+1)
Cω0

)k
1− (e−πδ)k

, (38)

which represents the analytical equation for the damage accumulation of a single

half-sine (23) impulse exciting a SDOF system.

3.2. SDOF response in the frequency domain120

The Fourier transform of the half-sine impulse function fs/2 Eq. (23) is [25]:

Fs/2(r) =
Af

(
1 + e2iπ

2r
)

1− 4π2r2
, (39)
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where r is the frequency ratio r = ω/ω0 and Af is the maximum amplitude of

the impulse spectrum, which depends on the amplitude of the impulse A and

the length of the impulse:

Af =
2A

aω0
(40)

The Fourier transform of the impulse-response function g(t) (3) is:

G(r) =
1/kv

−r2 + 2iδr + 1
, (41)

where kv is the stiffness of a SDOF system.

The response PSD is:

Sxx(ω) =
(
F (ω)G(ω)

)∗ (
F (ω)G(ω)

)
, (42)

where the ∗ operator stands for the conjugation of the complex value. The

frequency-counting methods used in this paper operate on the spectral moments

(14) of the power spectral density of the response.

The PSD SFF is shown in Fig. 3, and we can observe that the excitation

PSD is falling at higher frequencies, e.g. when the relative frequency r is higher125

than 2; this observation will later be used to define the parameter a.

0.05 0.10 0.50 1 5 10

10-4

0.001

0.100

Normalized amplitude

1

r

Figure 3: Comparison of the analytical (dashed line) and simplified Fourier transform (full

line) of the half-sine impulse.

When multiplied by the impulse transfer function G(r) (41), the response

spectrum PSD Sxx is less than 1 % of the maximum amplitude for lightly

damped structures, Fig. 4.
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The 4-th spectral moment is required to determine α2 in the fatigue-damage

estimation with the Tovo-Benasciutti method (13). Due to the infinite integral

(14) the 4-th moment becomes infinite, which is not reasonable as the system

is not excited significantly above ω0, see Fig. 4. For this reason the Fs/2 (39) is

simplified:

F̃s/2(ω) = Af θ(aω0 − ω) , (43)

where θ(x) is the Heaviside step function. The resulting simplified SXX(ω) for130

a = 2 is shown in Fig. 3 and 4.

0 1 2 3 4
r

0.001

0.010

0.100

1

0/

Figure 4: Comparison of the analytical (dashed line) and simplified (full line) response PSD

(normalized to Sxx(ω0)).

By substituting Eq. (41) into Eq. (43) the spectral moments can be obtained

analytically. The first spectral moment is:

m̃0 =

∫ ∞
0

4A2

m2a2ω2
0 (r4 + (4δ2 − 2) r2 + 1)

dr. (44)

which simplifies to:

m̃0 =
A2

2m2a2 (δ3 + δ)ω5
0

. (45)

Assuming lightly damped systems δ << 1, which are common in structural

dynamics, the higher-order terms of the damping coefficient can be neglected
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δj ≈ 0:

m̃0 ≈
A2

2m2a2δω5
0

. (46)

Similarly, assuming small damping ratios, the next two spectral moments can

be approximated as:

m̃1 ≈
A2
(
π − 2 tan−1(δ)

)
π2a2δω4

0m
2

m̃2 ≈
A2

2π2a2δω3
0m

2
. (47)

Using Eq. (10) the narrow-band method’s damage estimation using the approx-

imated spectral moments is:

DNB =
2k−1Γ

(
k
2 + 1

)
δ−

k
2 ω

1− 5k
2

0

(
am
A

)−k
π Ck

, (48)

and the fatigue-life estimation is the inverse value of the damage:

LNB =
1

DNB
(49)

The fourth spectral moment m4 is integrated using a finite upper limit of the

integration. The upper integration limit aω0 was used. a should be such that

the response PSD of an impulse-excited SDOF structure can be neglected after

the upper limit, see Fig. 4. Using the upper integration limit aω0 and the

assumption of a small damping coefficient, the approximated spectral moment

m̃4 is:

m̃4 ≈
A2
(

8πaδ − i(δ − i)3 tan−1
(

2πa
δ−i

)
+ i(δ + i)3 tan−1

(
2πa
δ+i

))
8π5a2δω0m2

. (50)

After applying the assumption of a small damping ratio and using the real part

of the equation, m4 becomes approximately:

m̃4 ≈
A2
(
−6δ2 tan−1

(
2πa
δ

)
+ 8πaδ + 2 tan−1

(
2πa
δ

))
8π5a2δω0m2

(51)

Table 1 shows the relationship between the numerically and analytically ob-

tained approximations of the spectral moments. The numerical moments were

obtained by numerically integrating Eq. (14) from 0 to aω0. For this calculation
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a = 2 and ω0 = 1 were used. A similar analysis was performed for the sensi-135

tivity of the analytically obtained spectral moments to the natural frequency of

the SDOF system in Table 2. Here, the value of the damping ratio was held

constant at δ = 0.01.

Table 1: Comparison of the numerically and analytically obtained spectral moments (ω0 = 1).

δ mNum
0 /m̃0 mNum

1 /m̃1 mNum
2 /m̃2 mNum

4 /m̃4

0.001 0.9794 0.9791 0.9789 0.9788

0.01 1.0000 1.0000 1.0010 1.0013

0.1 1.0000 1.0004 1.0103 1.0060

Table 2: Comparison of the numerically and analytically obtained spectral moments (δ =

0.01).

ω0 mNum
0 /m̃0 mNum

1 /m̃1 mNum
2 /m̃2 mNum

4 /m̃4

10 1.0000 1.0000 1.0010 1.0013

100 1.0000 1.0000 1.0010 1.0013

1000 1.0000 1.0000 1.0010 1.0013

Tables 1 and 2 support the simplifications made to obtain the approximations

of the spectral moments.140

3.3. Comparing the frequency- to time-domain counting methods for half-sine

impulse excitation

In order to compare the simplified frequency-domain method Eq. (48) to the

time-domain approach, the ratio between the individual life-estimation methods

is defined:

RNB =
DNB

DRF
=

2k−1Γ
(
k
2 + 1

)
δ−

k
2 ω

1− 5k
2

0

(
am
Af

)−k
π

((
Ace−

1
2 (πδ)

)k
+

(
Ace

− 1
2
(3πδ)(eπδ+1)

)k
1−(e−πδ)k

) , (52)

where DNB (48) is the narrow-band method and DRF (38) the rainflow method,

see Fig. 5.
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Similarly, the ratio can be defined for the Tovo-Bennasciutti method as:

RTB =
DTB

DRF
. (53)

Using Eq.(15) with the analytic expressions for m̃0 (46), m̃1, m̃2 (47) and145

m̃4 (51) the ratio can be obtained (it is not shown here, as the differences

compared to the narrow-band ratio are hard to see from the figure). Both ra-

tios depend on the natural frequency of the observed system ω0, coefficient of

damping δ, the material’s fatigue parameter k and the length of the impulse,

related to a.150
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Figure 5: RNB with fixed material parameters.

. It is clear from equation (52) that the theoretical time-to-failure prediction

discrepancies between the time- and frequency-domain approaches vary signifi-

cantly with the dynamic properties of the structure.

4. Experiment

4.1. Experimental setup155

To support the theoretical approach an experimental setup was prepared.

A standard Y sample was chosen [39, 31]. In general Y-shape sample behaves

as a multi-degree of freedom system. However, as the dynamic modes of the
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sample are well separated, the sample can be approximated as a SDOF system,

when exciting the significant mode only. The samples were produced by casting160

out of G-AlSi8Cu3(226) aluminum. They were additionaly face milled and the

contour was determined with wire EDM. The fatigue zones were additionally

fine ground and polished in order to remove any defects that could cause the

premature start of an initial crack. The Y shape exhibits a well defined high

stress area. Additionally the fatigue behaviour of this sample is well researched165

[39, 23, 8, 31] The weights on the sample can be changed in order to vary the

natural frequency and the damping of the system.

The Y sample was clamped in the fixture as shown in Fig. 6. Two strain

gauges were used on the first sample. The first one between the top arm and

the stem of the Y sample, Fig. 6, where the highest stresses should be at the170

specific mode shape. The second one was placed between the top arms. Two

accelerometers were also used, one on the base of the electrodynamic exciter,

and the second on one of the arms of the Y sample. The strain gauges were used

to determine the coefficient kσ (22), which relates the relative displacements of

the accelerometers to the stress response of the Y sample. The position of the175

accelerometer was chosen to give the best signal to noise ratio possible. The

scaling factor kσ incorporates all geometric constants of the coordinate systems

of the accelerometers. This procedure was also explained in detail in [31].

As the mass of the sample with the weights is not negligible compared to the

mass of the shaker armature, and the shaker is force controlled, it is important180

to consider the experiment as a system with 2 degrees of freedom, represented

schematically in Fig. 7. To account for the effect of the shaker armature’s

mass on the kinematic response of the sample to the dynamic excitation, the

differential equation of motion (A.1) has to be solved. The mass ma is the

armature mass of the shaker, which is connected to a rigid body with weak185

springs, and can be neglected. The mass ms is the mass of the sample with the

weights, and the stiffness k is the stiffness of the sample arms.
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Strain gage
Accelerometer

Figure 6: Experimental setup.

The modal decomposition of the system in Fig.7 to two separate degrees of

freedom is required to use the derived equation. This is presented in detail in

Appendix B.190

The relationship between the stresses at the measured points and the relative

displacements (kσ) was then determined, similar to the procedure described in

[31].

ma

ms

k

F(t)

xs

xa

Figure 7: Kinematic 2 DOF model of the experiment.

The frequency of the shocks was set to 2 shocks per second. It was ensured

that the response of the sample was below 0.1 % of the peak response before195

the start of the next impulse. The duration of the impulses was chosen so that

the PSD of the impulse was close to linear near the natural frequency of the

system [21]. During the testing the value of a = 2 was used to determine the
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duration of the impulse and consequently ensured that the natural dynamics

of the selected mode of the dynamic system was well excited, see Fig. 7. The200

frequency response of the sample was well within the linear range. Each sample

was excited with a constant amplitude of the impulse.

4.2. Data analysis

Due to the long-lasting experiments (the samples at the low excitation level

were tested for several weeks), only 3 sets of 3 samples were tested in order

to support the theoretical analysis. Different weights were used for each set in

order to vary the natural frequency and damping of the samples, see Tab. 3.

The damping coefficient was determined using the time-domain logarithmic de-

crament model [40]:

δ =
1

n
ln

x(t)

x(t+ nT0)
, (54)

where T0 = 1/ω0. The factor a (24) that determines the length of the impulse

was held constant for all the samples, with a value of a = 2.205

Table 3: Identified modal parameters of the samples.

Sample nr. Frequency [Hz] Damping coefficient [/] Peak impulse stress [MPa]

1.1 300.0 0.0269 209.94

1.2 300.0 0.0240 198.58

1.3 300.0 0.0266 209.76

2.1 330.0 0.0164 167.35

2.2 334.0 0.0185 152.92

2.3 328.0 0.0165 158.58

3.1 402.0 0.0148 113.68

3.2 398.5 0.0108 120.48

3.3 402.0 0.0202 127.86

4.2.1. Fatigue parameters

The structural dynamics changes far before the complete failure of the sam-

ple; therefore it is practical to identify failure when the natural frequency starts
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to change rapidly. In this research the natural frequency drop by 2% was con-

sidered failure. For details on the failure on damage identification from natural210

frequency, the interested reader is refered to: [34, 41]. Fig. 8 shows a histogram

of the rainflow cycles of a selected sample. The fatigue parameters were deter-

mined by a least-squares optimization by relating the numerical time-domain

rainflow to the experimentally identified damage.

0 50 100 150 200

Stress [MPa]

10−1

100

101

102

103

104

105

106

107

N
u
m

b
er

o
f
ra

in
fl
ow

cy
cl

es

Figure 8: Histogram of the rainflow cycles for the sample 1.3.

The following fatigue parameters were identified:

k = −6.51

C = 800.26.

These fatigue parameters were then used to determine the estimated fatigue life215

LRF = 1/DRF (38), see Tab. 4.

4.2.2. The frequency-domain life estimations

Based on the material’s properties, the natural frequency, the damping and

the excitation pulse parameters, the fatigue life LNB (49) can be estimated, see

Tab. 4. Additionally, the ratio RNB (52) is given. If the fatigue-life estimation220

LNB is corrected for the ratio RNB the corrected LNBcorr can be obtained.

21



Table 4: Fatigue-life estimates for the rainflow and the narrow-band methods.

Sample nr. Experiment LRF LNB RNB LNBcorr

[s] [s] [s] [/] [s]

1.1 3650 5305 627964 130.60 4808

1.2 19460 12327 1655389 107.23 15438

1.3 3230 8734 1180594 128.13 9214

2.1 52780 20029 770556 34.84 22120

2.2 113090 32106 1232668 44.98 27403

2.3 116540 23156 799102 34.76 22987

3.1 154830 62583 1776052 29.48 60242

3.2 66090 45511 1274479 15.41 82660

3.3 103070 46319 1245921 53.20 23419

The results of the experimental analysis is presented in Fig. 9. The Figure

presents the relations between the fatigue life estimation obtained by the narrow-

band and rainflow method. The life estimations of the narrow-band method were

corrected with the analytically obtained ratio RNB . This moves the frequency-225

domain narrow-band method life estimation closer to the time-domain rainflow

and experimental life.
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Figure 9: Comparison of the narrow-band and corrected narrow-band life estimation with

regards to the experimental rainflow fatigue lives.

Similarly, the results for the Tovo-Benasciutti method the ratio RTB was

determined, and the life estimations LRF and LTB , together with the corrected

life estimation LTBcorr, are presented in Table 5.230

Table 5: Fatigue-life estimations for the rainflow and the Tovo-Benasciutti method.

Sample nr. Experiment LRF LTB RTB LTBcorr

[s] [s] [s] [/] [s]

1.1 3650 5305 627964 102.51 6126

1.2 19460 12327 1655389 85.70 19315

1.3 3230 8734 1180594 100.75 11718

2.1 52780 20029 770556 34.84 22120

2.2 113090 32106 1232668 37.33 33023

2.3 116540 23156 799102 29.28 27291

3.1 154830 62583 1776052 25.16 70575

3.2 66090 45511 1274479 13.62 93585

3.3 103070 46319 1245921 43.62 28565

The comparison for the Tovo-Bennasciutti method and the rainflow method,
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with the corrected Tovo-Bennasciutti method, is presented in Fig. 10.
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Figure 10: Comparison of the Tovo-Bennasciutti and corrected Tovo-Bennasciutti life estima-

tion with regards to the experimental rainflow fatigue lives.

In the Tables 4 and 5 discrepancies between the calculated rainflow lives and

the actual experimental fatigue lives are noticeable. These are the cause of the

variation between the individual samples.235

With the proposed model it was possible to significantly improve the fatigue life

predictions for both the narrow-band and the Tovo-Bennaciutti method. While

the analysed process is distinctly narrow-banded, the derivation for the Tovo-

Bennasciutti method was also carried out, as the Tovo-Bennasciutti method can

be applied also to a broadband band process.240

5. Conclusion

This theoretical and experimental study focuses on the discrepancies between

the time-domain and frequency-domain fatigue-life estimations when dealing

with impulse-excitation loads. As the impulses render the signal non-stationary

and non-Gaussian the accuracy of the frequency methods becomes questionable.245

Even for structures that are intended to be exposed to random loads only, the

impulse loading can appear due to clearances.
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As can be seen in Tables 5 and 4 the frequency-domain methods predict sig-

nificantly longer fatigue lives when compared to the experimentally measured

time-domain observations. This difference originates in the basic inability of the250

frequency-domain methods to analyse non-stationary and non-Gaussian pro-

cesses. It was further found that this difference depends on the dynamic prop-

erties of the system (i.e., natural frequency, damping), the impulse-excitation

parameters and the fatigue material parameters.

This manuscript introduces a theoretically deduced ratio between the time-255

and frequency-domain methods (narrow-band and Tovo-Benasciutti). The pro-

posed solution takes into account the dynamic properties, the impulse excitation

and the fatigue parameter, and was shown to give accurate results also in the

frequency domain, assuming linear relations. The proposed correction was also

experimentally confirmed.260
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Appendix A. Structural dynamics

The equation of motion for a general multiple-degree-of-freedom (MDOF)

structure is [26, 42]:

M ẍ + C ẋ + K x = f (A.1)
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where M, C and K are the mass, viscous damping and stiffness matrices of the

structure, respectively. f represents the vector of the excitation forces and x is

the displacement vector of the stucture’s degrees of freedom. After introduc-

ing the proportional viscous damping and modal coordinates, the equations of

motion become uncoupled [25].

I q̈ +
[
�2ξω0�

]
q̇ +

[
�ω2

0�

]
q = ΦTF(ω), (A.2)

where:

x = Φ q, (A.3)

q are the modal coordinates and Φ is the mass-normalized modal matrix [25]. I

represents the identity matrix,
[�2ξω0�

]
is the diagonal damping matrix and[

�ω2
0�

]
is the diagonal matrix of natural frequencies. ω0 stands for the natural

frequency of the uncoupled modal degrees of freedom and ξ is the corresponding

coefficient of viscous damping. For the i-th modal coordinate qi the equation of

motion is [25]:

q̈i + 2ξiω0,i q̇i + ω2
0,i qi = ΦTi F (ω), (A.4)

where Φi is the mass-normalized eigenvector of the i-th degree of freedom.375

Appendix B. Modal decomposition of the 2 DOF system

The equation of motion for the system in Fig. 7 (Eq. (A.1)) is:[
ms 0

0 ma

](
ẍs

ẍa

)
+

[
k −k

−k k

](
xs

xa

)
=

(
0

F (t)

)
(B.1)

After solving Eq. (B.1) for its eigenvalues, the natural frequencies are:

ω0,1 = 0, ω0,2 =

√
k
√
ms +ma√
ms
√
ma

(B.2)

and the modal matrix:

Φ =

(
1 −mams
1 1

)
(B.3)
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Using the modal coordiantes (A.2):[
1 0

0 1

](
q̈1

q̈2

)
+

[
ω2
0,1 0

0 ω2
0,2

](
q1

q2

)
=

(
F (t)

F (t)

)
(B.4)

And finally, the motion equation of the flexible (non-zero natural frequency)

mode shape is:

q̈2 + 2ξ2ω0,2 q̇2 + ω2
0,2 q2 = F (t), (B.5)

Using Eq. (A.3) the physical coordinates x are:(
xs

xa

)
= Φ q =

(
q1 − ma

ms
q2

q1 + q2

)
(B.6)

The relative displacement between the sample and shaker armature is de-

fined:

∆x = xs − xa = −q2 −
ma

ms
q2 (B.7)

and can, under a linear assumption, be related to the stress response (22).

Eq.(34) and (48) can then be used on the q2 degree of freedom to determine the

damage to the sample.
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